Google Android 관련 Reference & JNI Complie 옵션

예전에 안드로이드 관련 과제를 진행하면서 보았던 Reference 들이다.

1.2 Reference #

[edit]

1.2.2 Android Internal #

이건 아마도 JNI 관련 라이브러리를 만드는 중에 시도했던 삽질 과정 중의 컴파일 옵션들..

  • ./configure –host=arm-none-linux-gnueabi –enable-shared CFLAGS=-fpic CXXFLAGS=-fpic LDFLAGS=-shared
  • ./configure –host=arm-none-linux-gnueabi –enable-shared
    CFLAGS=-fpic CXXFLAGS=-fpic CPPFLAGS=”-fpic -I/usr/local/include/
    -I/usr/lib/jvm/java-6-sun/include
    -I/usr/lib/jvm/java-6-sun/include/linux” LDFLAGS=-shared

이후에 자료들이 많이들 생긴 듯 해서 별로 필요는 없을 듯 하지만, 위키 쪽 자료들을 조금씩 정리하면서 블로그로 옮기고 정리해가자.

2012. 6. 19. 추가
Make shared native library: g++ -shared -I/usr/lib/jvm/java-6-sun/include -I/usr/lib/jvm/java-6-sun/include/linux -o libjnifunc.so jnifunc.cpp
Run: java -Djava.library.path=. JniFuncMain
Geting “Signature”: javap -s -p JniFuncMain

Crosstool을 이용한 Softfloat EABI 툴체인 빌드 방법

 안드로이드에서 구동될 커널이나 C/C++ 애플리케이션, 라이브러리 등은 ARM용 EABI와 soft-float을 지원하는 툴체인으로 빌드되어야 합니다. 현재 많이 쓰이는 안드로이드 포팅이나 라이브러리 빌드를 위해 사용하는 툴체인을 실제 구글링해보시면 대부분 Codesourcery 사의 툴체인을 사용 중인 것 같은데요. 저 역시, 처음에는 Codesourcery 사의 2008q3 버전의 툴체인(arm-none-linux-gnueabi-*)을 사용했었습니다. 그런데, 그 툴체인으로 커널을 빌드하니까, 왠 일인지 이미지만 3GB인지, 300MB인지가 나와서 실제 부팅 중 Uncompressing Linux…………….. 메시지에서 재부팅되거나 멈춰버리는 것이었습니다.
 그래서, 자체적으로 툴체인 빌드를 하기 위한 방법을 찾아보았습니다. KLDP 위키의 Android Porting On Real Target 에서 역시 툴체인 빌드를 해서 썼다고 되어 있기 때문이기도 하구요. 일단은 KLDP 위키의 방법과 같은 방법을 사용하기로 하고(저 역시,
“To make life easier,”) 같은 방법인 crosstool과 EABI patch를 이용하기로 했습니다. 다음은 그 방법을 설명합니다.

 일단, http://www.kegel.com/crosstool/ 에서 crosstool 0.43을 다운로드 받고 압축을 해제합니다.
 crosstool의 사용법은 http://www.kegel.com/crosstool/current/doc/crosstool-howto.html 에서 설명하고 있습니다. 약간 설명을 드리자면, 빌드하고자 하는 툴체인의 .sh 파일 안의 TARBALLS_DIR, RESULT_TOP, GCC_LANGUAGES 를 수정해야 하는데, TARBALLS_DIR은 crosstool이 받아올 Source tarball을 저장할 디렉토리이고, RESULT_TOP은 빌드된 최종 툴체인이 저장될 디렉토리의 탑 디렉토리(이 디렉토리는 만들어져 있어야 하고, 빌드하는 유저에게 쓰기 권한이 있어야 합니다.), GCC_LANGUAGES 는 빌드할 툴체인에서 지원할 언어에 대한 것입니다. 파일을 열어보시면 금방 아실 수 있을 겁니다.
 자, 이제 soft-float eabi 패치를 구하여야 합니다. KLDP 위키 글을 따라가보면, Khem Raj의 a glibc 2.5+ nptl build for arm softfloat eabi patch를 적용했다고 나와 있습니다. 링크된 글의 본문에 나와있는 패치를 파일로 저장한 후 아까 받았던 crosstool에 적용시킵니다. 패치를 적용한 후 빌드를 수행하면, 잘 되지 않습니다. follow된 글을 따라가보면 스크립트 안의 "-nounpack" 옵션을 제거하고 다시 해보란 코멘트를 찾아볼 수 있습니다.
 그럼 -nounpack을 제거하고 다시 시도해 봅시다. 그래도 잘 안될텐데, 기억에는 아마도 arm-softfloat.dat 파일 안의 “KERNELCONFIG=`pwd`/arm.config” 내용을 그대로 복사해서 arm-softfloat-eabi.dat 파일 안에 넣어주었던 것 같습니다. 그리고 나서도 저는 안되었는데, 그 이유는 스크립트 내부에서 사용되는 awk를 gawk가 아닌 mawk를 사용해서 발생한 문제였습니다. 우분투 8.04에서 기본으로 깔린 awk가 mawk더군요(제가 진행한 작업은 모두 우분투 8.04 하에서 진행되었습니다.). mawk를 사용하고 싶다면, http://sourceware.org/ml/crossgcc/2007-07/msg00029.html 을 참조하여 패치한 후 진행합니다. 그냥 귀찮다면, 패치 제작자가 권장하는 gawk를 사용하시구요. 우분투에서 기본 awk를 gawk로 바꾸는 방법은 gawk를 내려받아 설치한 후(sudo apt-get install gawk), 기본 awk를 gawk로 설정하시면(sudo update-alternative –config awk:확실하지 않습니다.;;) 될 겁니다.
 아무튼, 이제 빌드하면(당연히 빌드 이전에 demo-arm-softfloat-eabi.sh 파일 안의 세 변수는 적절히 설정되어 있어야 합니다.) 설정되어 있던 디렉토리에 툴체인이 빌드되어 있는 것을 보실 수 있습니다.

 KLDP의 원문을 곱씹으며 읽어볼겸, 영어공부도 할겸, 영어에 익숙하지 않은 개발자를 위해서겸, 겸사겸사, 번역해 보았습니다. 허접한 번역이지만 보실 분은 http://wiki.dasomoli.org/wiki.php/AndroidPortingOnRealTarget/ko 를 보시면 됩니다(우리나라 사람이 쓴 원문을 번역한다는 것이 참 아이러니합니다만..).

OpenCV의 안드로이드 포팅을 위한 첫단계!

OpenCV의 리눅스 소스를 안드로이드에 포팅하기 위해서 cvCreateImage와 cvReleaseImage 함수가 들어있는 cxcore 라이브러리의 빌드에 들어갔다.

소스의 루트디렉토리에서 ./configure 의 옵션을 조정하여 빌드하는 방법에 실패하고,

직접 cxcore/src 디렉토리 안에서 makefile을 작성하여 빌드하였다.

다음은 빌드할 때 사용한 makefile이다.

.SUFFIXES : .cpp .o

CC = arm-none-linux-gnueabi-gcc
LD = arm-none-linux-gnueabi-ld

INC =
LIBS =
CFLAGS = -I/usr/lib/jvm/java-6-sun/include -I/usr/lib/jvm/java-6-sun/include/linux -I../include -fpic -c
#LDFLAGS = -shared -T armelf_linux_eabi.xsc –dynamic-linker /system/bin/linker -nostdlib -rpath /system/lib -L/home/dasomoli/lib/arm-none-linux-eabi/ -lcv -lcxcore -lml
LDFLAGS = -shared -nostdlib -T /home/dasomoli/src/opencv_bak/opencv-1.0.0/armelf_linux_eabi.xsc -rpath /system/lib -rpath . -L . -L/home/dasomoli/androidinternal/system/lib -lc -lm -lstdc++

OBJS = cxalloc.o cxjacobieigens.o cxpersistence.o cxarithm.o cxlogic.o cxprecomp.o cxarray.o cxlut.o cxrand.o cxcmp.o cxmathfuncs.o cxsumpixels.o cxconvert.o cxmatmul.o cxsvd.o cxcopy.o cxmatrix.o cxswitcher.o cxdatastructs.o cxmean.o cxtables.o cxdrawing.o cxmeansdv.o cxutils.o cxdxt.o cxminmaxloc.o dummy.o cxerror.o cxnorm.o cximage.o cxouttext.o
SRCS = cxalloc.cpp cxjacobieigens.cpp cxpersistence.cpp cxarithm.cpp cxlogic.cpp cxprecomp.cpp cxarray.cpp cxlut.cpp cxrand.cpp cxcmp.cpp cxmathfuncs.cpp cxsumpixels.cpp cxconvert.cpp cxmatmul.cpp cxsvd.cpp cxcopy.cpp cxmatrix.cpp cxswitcher.cpp cxdatastructs.cpp cxmean.cpp cxtables.cpp cxdrawing.cpp cxmeansdv.cpp cxutils.cpp cxdxt.cpp cxminmaxloc.cpp dummy.cpp cxerror.cpp cxnorm.cpp cximage.cpp cxouttext.cpp

TARGET = libcxcore.so

all : $(TARGET)

$(TARGET) : $(OBJS)
    $(LD) $(LDFLAGS) -o $@ $(OBJS) $(LIBS)

$(OBJS) : $(SRCS)
    $(CC) $(CFLAGS) $(SRCS)

dep :
    gccmakedep $(INC) $(SRCS)

clean :
    rm -rf $(OBJS) $(TARGET) core

new :
    $(MAKE) clean
    $(MAKE)

CFLAGS의 옵션 중 -I/usr/lib/jvm/java-6-sun/include와 -I/usr/lib/jvm/java-6-sun/include/linux 옵션은 구글 안드로이드 Application 개발시 사용한 java 6 라이브러리의 include 경로이고, ../include 는 실제 $OPENCV_HOME/cxcore/include 이다. -c 옵션으로 *.o 파일을 생성한다.

물론, 이전에 javah로 구글 안드로이드 Application의 JNI를 사용하는 클래스의 C/C++용 헤더 파일(org_swssm_NativeOpenCV.h)이 생성되어져 있었고, 헤더 파일 안의 함수는 cxarray.cpp 함수 안에 구현되어져 있었다. 당연히 cxarray.cpp 에는 #include “org_swssm_NativeOpenCV.h” 가 들어가 있다. cpp 안의 함수 안에서 클래스를 env->FindClass 로 찾을 때 org.swssm.andCvSize 와 같이 클래스의 전체 경로를 적어주어야 한다는 점에 주의하자.

LFLAGS의 옵션 중 -T /home/dasomoli/src/opencv_bak/opencv-1.0.0/armelf_linux_eabi.xsc는 이전에 언급했던 툴체인 내의 ldscript의 수정본이다. 또한, -nostdlib 는 툴체인의 기본 라이브러리를 사용하지 않겠다는 옵션으로 보인다. 또, -rpath /system/lib -rpath . 는 라이브러리 실행 시 참조할 라이브러리 경로로써 안드로이드의 라이브러리 폴더인 /system/lib와 라이브러리가 들어가 있는 곳의 경로를 참조하도록 한다. -L . -L/home/dasomoli/androidinternal/system/lib 는 링킹 타임에 참조할 라이브러리가 들어가 있는 경로로 /home/androidinternal/ 아래에 Benno의 System image 가 압축 해제되어 있다. 이는 안드로이드에서 실제 사용되는 library를 링킹 시 참조하여 링킹하도록 한다. -lc -lm -lstdc++ 는 각각 안드로이드 /system/lib 의 libc.so, libm.so, libstdc++.so 를 참조하도록 한다.

make가 성공적으로 이루어지기 위해서는 OpenCV의 cxcore 라이브러리 내의 소스들에 약간의 수정이 필요한데, 이는 안드로이드 내부에서 사용되는 라이브러리들에서 지원되지 않는 함수(혹은, 내가 제대로 링크시키지 못했거나..;;)들을 제거해야 하기 때문이다. 대표적인 함수들로 assert 함수가 있으므로 include안의 #include <assert.h>를 주석처리 하고, cxtypes.h 내의 assert 문들이 사용된 부분을 삭제하도록 한다. 추가적으로 #define assert(x) (x) 하여 bool 처리만 하도록 처리하기도 하였다.

make clean; make를 마치면 libcxcore.so 파일이 생성되는데 이를 안드로이드 에뮬레이터의 /system/lib 안에 넣어주도록 한다.(adb push libcxcore.so /system/lib/)

안드로이드 플랫폼 내부에서의 libcxcore.so 파일의 동작여부를 확인하기 위해서 별도의 간단한 application을 build하여 테스트하도록 한다. 먼저 main.c 를 작성한다.

#include <stdio.h>
#include “cxcore.h”

int main(void)
{
    IplImage *pImage;
    CvSize size;

    size.width = 100;
    size.height = 100;

    pImage = cvCreateImage(size, 8, 3);

    cvReleaseImage(&pImage);

    return 0;
}

cvCreateImage와 cvReleaseImage 함수만을 사용하여 동작하는 지를 살펴본다.

main.c의 구동을 위해서 함수의 entry point가 되는 _start 함수를 구현한다. 이는 http://honeypod.blogspot.com/2007/12/dynamically-linked-hello-world-for.html 에서 사용한 start.c 파일을 그대로 사용하였다.(http://honeypod.blogspot.com/2007/12/initialize-libc-for-android.html의 _start 함수를 어셈블러로 구현하여 사용할 수도 있을 것 같다.)

#include <stdlib.h>
extern int main(int argc, char **argv);

void _start(int argc, char **argv)
{
        exit (main (argc, argv));
}

기억상으로는 start.o 는 arm-none-linux-gnueabi-gcc -c start.c 하여 그대로 사용했던 듯 하다.
main.o 는 arm-none-linux-gnueabi-gcc -c -I../include main.c 와 같이 하여 cxcore의 include 경로를 추가한 후 컴파일 하여 생성한다.
중요한 cxcoretest라는 간단한 Executable 생성은 다음의 옵션으로 한다.

arm-none-linux-gnueabi-ld –dynamic-linker /system/bin/linker -nostdlib -rpath /system/lib -rpath . -L . -L ~/androidinternal/system/lib -lc -lcxcore -lstdc++ -lm -ldl -o cxcoretest start.o main.o

shared library 생성시와는 다르게 armelf_linux_eabi.xsc 를 사용하지 않음에 주의한다. 이를 안드로이드 에뮬레이터에 넣고(adb push cxcoretest /data/) 실행해본다.

# ./cxcoretest
WARNING: `libcxcore.so` is not a prelinked library
#

실행은 잘 되는 것을 볼 수 있다. 근데, 제대로 호출된 것 맞는건가? 확인해보자. Benno의 strace를 받아 안드로이드에 넣고(adb push strace /data/), strace로 실행(./strace ./cxcoretest)해보자!

execve(“./cxcoretest”, [“./cxcoretest”], [/* 10 vars */]) = 0
getpid()                                = 1662
syscall_983045(0xb0015cb0, 0xb00128d8, 0x3d4, 0, 0xbeddddc8, 0x1, 0, 0xf0005, 0xb00128d8, 0, 0, 0xbeddddc4, 0, 0xbedddd78, 0xb0000dd9, 0xb00016fc, 0x10, 0xb0015cb0, 0, 0, 0xc764, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0) = 0
gettid()                                = 1662
sigaction(SIGILL, {0xb0001471, [], SA_RESTART}, {SIG_DFL}, 0) = 0
sigaction(SIGABRT, {0xb0001471, [], SA_RESTART}, {SIG_DFL}, 0) = 0
sigaction(SIGBUS, {0xb0001471, [], SA_RESTART}, {SIG_DFL}, 0) = 0
sigaction(SIGFPE, {0xb0001471, [], SA_RESTART}, {SIG_DFL}, 0) = 0
sigaction(SIGSEGV, {0xb0001471, [], SA_RESTART}, {SIG_DFL}, 0) = 0
sigaction(SIGSTKFLT, {0xb0001471, [], SA_RESTART}, {SIG_DFL}, 0) = 0
open(“libc.so”, O_RDONLY|O_LARGEFILE)   = -1 ENOENT (No such file or directory)
open(“/system/lib/libc.so”, O_RDONLY|O_LARGEFILE) = 3
lseek(3, -8, SEEK_END)                  = 241860
read(3, “\0\0\340\257PRE “, 8)          = 8
mmap2(0xafe00000, 245760, PROT_READ|PROT_WRITE|PROT_EXEC, MAP_PRIVATE, 3, 0) = 0xafe00000
close(3)                                = 0
mmap2(0xafe3c000, 45056, PROT_READ|PROT_WRITE, MAP_PRIVATE|MAP_ANONYMOUS, 0, 0) = 0xafe3c000
mprotect(0xafe00000, 233472, PROT_READ|PROT_EXEC) = 0
open(“libcxcore.so”, O_RDONLY|O_LARGEFILE) = -1 ENOENT (No such file or directory)
open(“/system/lib/libcxcore.so”, O_RDONLY|O_LARGEFILE) = 3
lseek(3, -8, SEEK_END)                  = 2199920
read(3, “veSlice\0”, 8)                 = 8
fstat64(1, {st_mode=S_IFCHR|0600, st_rdev=makedev(136, 0), …}) = 0
brk(0)                                  = 0x13000
brk(0x13000)                            = 0x13000
brk(0x14000)                            = 0x14000
ioctl(1, SNDCTL_TMR_TIMEBASE or TCGETS, {B38400 opost isig icanon echo …}) = 0
write(1, “WARNING: `libcxcore.so` is not a”…, 51WARNING: `libcxcore.so` is not a prelinked library
) = 51
lseek(3, 0, SEEK_END)                   = 2199928
mmap2(0x80100000, 2203648, PROT_READ|PROT_WRITE|PROT_EXEC, MAP_PRIVATE, 3, 0) = 0x80100000
close(3)                                = 0
open(“libm.so”, O_RDONLY|O_LARGEFILE)   = -1 ENOENT (No such file or directory)
open(“/system/lib/libm.so”, O_RDONLY|O_LARGEFILE) = 3
lseek(3, -8, SEEK_END)                  = 133184
read(3, “\0\0\300\257PRE “, 8)          = 8
mmap2(0xafc00000, 135168, PROT_READ|PROT_WRITE|PROT_EXEC, MAP_PRIVATE, 3, 0) = 0xafc00000
close(3)                                = 0
mprotect(0xafc00000, 131072, PROT_READ|PROT_EXEC) = 0
open(“libstdc++.so”, O_RDONLY|O_LARGEFILE) = -1 ENOENT (No such file or directory)
open(“/system/lib/libstdc++.so”, O_RDONLY|O_LARGEFILE) = 3
lseek(3, -8, SEEK_END)                  = 4144
read(3, “\0\0\320\257PRE “, 8)          = 8
mmap2(0xafd00000, 8192, PROT_READ|PROT_WRITE|PROT_EXEC, MAP_PRIVATE, 3, 0) = 0xafd00000
close(3)                                = 0
mprotect(0x80100000, 1986560, PROT_READ|PROT_EXEC) = 0
brk(0)                                  = 0x14000
brk(0x14000)                            = 0x14000
brk(0x15000)                            = 0x15000
brk(0x16000)                            = 0x16000
mprotect(0, 0, PROT_READ|PROT_EXEC)     = 0
brk(0x1d000)                            = 0x1d000
exit_group(0)                           = ?
Process 1662 detached

음… 봐도 잘 모르겠다.. 잘 안되는 것 같기도 하고… -_-;;;

흥미로운 점은, 빨간 색으로 표시한 부분을 보면 알겠지만, 사용된 안드로이드에서 제공하는 모든 library의 마지막 4 바이트에는 “PRE “가 들어가있다.

일단 JNI를 사용하는 Application을 사용해서 죽는지부터 보자-_-;;;

Call 버튼을 눌러보자!

사용자 삽입 이미지
오! 안죽는다! 안죽는게 뭐가 대단하냐고? ..당신은 삽질을 덜 한 것이다-_-+

그럼 cvCreateImage가 리턴하는 포인터의 값을 int로 찍어보자. 일단 값을 1234로 넣어두고 리턴하는 값을 받은 후에 찍어보자. 이왕 하는 김에 Object로 리턴하는 andCvSize 클래스의 값도 찍어보자!

                    int pImage = 1234;
                    Log.i(LOG_TAG, “pImage = ” + pImage);
                    pImage = NativeOpenCV.andcvCreateImage(cvSize, 8, 3);
                   
                    Log.i(LOG_TAG, “after call, pImage = ” + pImage);

                    andCvSize cvSize2 = NativeOpenCV.andcvGetSize(pImage);
                   
                    Log.i(LOG_TAG, “cvSize2.width : ” + cvSize2.width + “, cvSize2.height : ” + cvSize2.height);
                   
                    NativeOpenCV.andcvReleaseImage(pImage);

adb logcat

I/CallOpenCV( 1830): pImage = 1234
D/dalvikvm( 1830): LOADING path /system/lib/libcxcore.so 0x4006ddb0
I/dalvikvm( 1830): Added shared lib /system/lib/libcxcore.so 0x4006ddb0
I/dalvikvm( 1830): No JNI_OnLoad found in /system/lib/libcxcore.so 0x4006ddb0
D/dalvikvm( 1830): +++ not scanning ‘/system/lib/libwebcore.so’ for ‘andcvCreateImage’ (wrong CL)
D/dalvikvm( 1830): +++ not scanning ‘/system/lib/libmedia_jni.so’ for ‘andcvCreateImage’ (wrong CL)
I/CallOpenCV( 1830): after call, pImage = 1459360
D/dalvikvm( 1830): +++ not scanning ‘/system/lib/libwebcore.so’ for ‘andcvGetSize’ (wrong CL)
D/dalvikvm( 1830): +++ not scanning ‘/system/lib/libmedia_jni.so’ for ‘andcvGetSize’ (wrong CL)
I/CallOpenCV( 1830): cvSize2.width : 100, cvSize2.height : 100
D/dalvikvm( 1830): +++ not scanning ‘/system/lib/libwebcore.so’ for ‘andcvReleaseImage’ (wrong CL)

D/dalvikvm( 1830): +++ not scanning ‘/system/lib/libmedia_jni.so’ for ‘andcvReleaseImage’ (wrong CL)

오오! 잘된다! 한번 더!

I/CallOpenCV( 1830): onClick
I/CallOpenCV( 1830): calling native method
I/CallOpenCV( 1830): pImage = 1234

I/CallOpenCV( 1830): after call, pImage = 1459360


I/CallOpenCV( 1830): cvSize2.width : 100, cvSize2.height : 100

잉? 포인터 값이 같네? 제대로 된 거 맞나? Release했던 부분을 놔뒀다가 다시 사용하나? cvReleaseImage를 주석처리 하고 계속 할당하는지 보자!

I/CallOpenCV( 1889): pImage = 1234
D/dalvikvm( 1889): LOADING path /system/lib/libcxcore.so 0x40060948
I/dalvikvm( 1889): Added shared lib /system/lib/libcxcore.so 0x40060948
I/dalvikvm( 1889): No JNI_OnLoad found in /system/lib/libcxcore.so 0x40060948
D/dalvikvm( 1889): +++ not scanning ‘/system/lib/libwebcore.so’ for ‘andcvCreateImage’ (wrong CL)
D/dalvikvm( 1889): +++ not scanning ‘/system/lib/libmedia_jni.so’ for ‘andcvCreateImage’ (wrong CL)
I/CallOpenCV( 1889): after call, pImage = 1460544
D/dalvikvm( 1889): +++ not scanning ‘/system/lib/libwebcore.so’ for ‘andcvGetSize’ (wrong CL)
D/dalvikvm( 1889): +++ not scanning ‘/system/lib/libmedia_jni.so’ for ‘andcvGetSize’ (wrong CL)
I/CallOpenCV( 1889): cvSize2.width : 100, cvSize2.height : 100
I/CallOpenCV( 1889): onClick
I/CallOpenCV( 1889): calling native method
I/CallOpenCV( 1889): pImage = 1234
I/CallOpenCV( 1889): after call, pImage = 1490752
I/CallOpenCV( 1889): cvSize2.width : 100, cvSize2.height : 100

후후후.. 포인터 값이 계속 바뀌는군.. 그럼 계속 할당되는 게 맞겠지 ㅋㅋㅋ

그럼 성공!!! 으하하하하하하!

참고 :
http://groups.google.com/group/android-developers/browse_thread/thread/b3376922f5b7a93a
http://groups.google.co.jp/group/android-developers/browse_thread/thread/ed437a61e678aab8
http://benno.id.au/blog/2007/11/13/android-native-apps
http://honeypod.blogspot.com/2007/12/shared-library-hello-world-for-android.html
http://honeypod.blogspot.com/2007/12/dynamically-linked-hello-world-for.html
http://benno.id.au/blog/
http://honeypod.blogspot.com/2007/12/initialize-libc-for-android.html
http://davanum.wordpress.com/2007/12/09/android-invoke-jni-based-methods-bridging-cc-and-java/
http://java.sun.com/javase/6/docs/technotes/guides/jni/spec/jniTOC.html

구글 Android SDK 셋팅(우분투 8.04 기준)

1. http://code.google.com/android 에서 Download the SDK 를 클릭

2. 라이센스 확인

3. Linux (i386) 용 zip 다운로드

4. 압축 해제.

4.1. 계정의 .profile 맨 마지막에 다음 내용을 추가하고 다시 로그인 << 여기 추가되었습니다.

PATH=”$HOME/android/tools:$PATH”
PATH=”$HOME/eclipse/tools:$PATH”

4.2. 압축해제한 디렉토리를 ~/android 로 symbolic link. << 여기 추가되었습니다.

5. JDK 설치(sudo apt-get install sun-java6-jdk)

6. http://code.google.com/android 의 Docs 를 눌러 Getting started / Installing the SDK

7. System and Software Requirements 의 Eclipse 를 눌러 Eclipse IDE for Java Developers를 다운로드

8. 홈폴더에서 압축해제.

[#M_* 바탕화면에서 실행하기 위해 $HOME/바탕화면/eclipse.desktop 생성|<<접기>>| [Desktop Entry]
Version=1.0
Exec=/home/dasomoli/eclipse/eclipse
Icon=/home/dasomoli/eclipse/icon.xpm
Name=Eclipse
GenericName=Development Tools
Comment=Eclipse
Encoding=UTF-8
Terminal=false
Type=Application
Categories=Application;Development;_M#]
9. Eclipse에서 WST 설치

10. Eclipse에서 https://dl-ssl.google.com/android/eclipse/ 를 추가하고 설치

11. Eclipse에서 Window/Preference 의 Android 의 SDK Location 을 아까 SDK의 압축 해제 디렉토리로 지정

12. 프로젝트 시작!