[Ethereum] 트랜잭션 해시로부터 Public key 및 주소 얻기

Ethereum의 경우 버전에 따라 트랜잭션에 gasPrice를 쓸 지, maxFeePerGas/maxPriorityFeePerGas 를 쓸 지가 정해진다. https://ethereum.stackexchange.com/questions/147692/how-to-get-public-key-by-the-transaction-hash 를 참고.

주소를 얻을 때, Public key에서 앞의 한 바이트(0x04)를 빼고, keccak256을 돌리는 부분에 유의하자.

const { ethers } = require("hardhat");

// 트랜잭션 서명 값
// const r = "0xe680637b83a1dd102364503bd77979b87c92ba651132a4df8e839af69c20af95";
// const s = "0x65becfa32384747adb05f543397baaf23d1c55fa28d0c9a38924912dae6df28f";
// const v = 12266684226873;
// const chainId = 6133342113419;

// 트랜잭션 해시
const txHash = "0xc7159866fb5b94d291e8624bdc731b7a6d46533b398065de7aa7dd1af7b6aa36";
const ethermainHash = "0xef120deb6ff2e516ad44724d220c0cd73166d169a2a0b0f66dfb5613d2d6169c"
const sepoliaHash = "0xfe4ddad4cae9ea353fc91441ee5db6c70bd5468673d907926be92dd4b8a63f63"

// 실제 트랜잭션에 사용된 private key. 아무거나 넣자.
const privateKey = "0x0000000000000000000000000000000000000000000000000000000000000001";

// Web3 프로바이더 설정 (Hardhat 로컬 노드 사용 예시)
const provider = ethers.provider;

// 서명된 트랜잭션 정보 가져오기
async function getPublicKeyFromTransactionHash(provider, txHash) {
  // Fetch the transaction using the transaction hash and provier
  const tx = await provider.getTransaction(txHash);

  console.log(tx);

  // Extract the all the relevant fields from the transaction (We need all of them)
  const unsignedTx = {
    gasPrice: tx.gasPrice,
    gasLimit: tx.gasLimit,
    value: tx.value,
    nonce: tx.nonce,
    data: tx.data,
    chainId: tx.chainId,
    to: tx.to,
    type: tx.type,
    // maxFeePerGas: tx.maxFeePerGas,
    // maxPriorityFeePerGas: tx.maxPriorityFeePerGas,
  };

  // Serializing tx without the signature
  const serializedTx = ethers.utils.serializeTransaction(unsignedTx);

  // Extract the signature (v, r, s) from the transaction
  const { v, r, s } = tx;

  // Join splitted signature
  const signature = ethers.utils.joinSignature({ v, r, s });

  const recoveredPublicKey = ethers.utils.recoverPublicKey(
    ethers.utils.keccak256(serializedTx),
    signature,
  );
  console.log("recoveredPublicKey:", recoveredPublicKey);
  const keccak = ethers.utils.keccak256("0x" + recoveredPublicKey.slice(4))
  console.log("keccak256 of recoveredPublicKey:", keccak, ethers.utils.keccak256("0x" + recoveredPublicKey.slice(4)));

  // Recover the address or public key with (replace recoverAddress by recoverPublicKey) associated with the transaction
  return ethers.utils.recoverAddress(
    ethers.utils.keccak256(serializedTx),
    signature
  );
}

async function main() {
  const address = await getPublicKeyFromTransactionHash(provider, txHash);

  console.log("Address:", address);
}

main()
.then(() => process.exit(0))
.catch((error) => {
    console.error(error);
    process.exit(1);
});

[Ethereum] 트랜잭션과 서명

트랜잭션

트랜잭션 T는 다음 data를 포함한다.

T = { nonce, gasPrice, gasLimit, to, value, data, v, r, s }
  • nonce: 보내는 EOA(External Owned Account) 의 counter.
    • 중간에 생략되면 생략된 nonce가 와서 유효하게 처리되기 전까지 이후의 nonce를 가지는 트랜잭션은 mempool에 저장되었다가 처리 후 유효하게 된다.
  • gasPrice: 발신자가 보내는 가스의 가격. 단위는 wei.
    • 0도 가능. 높을 수록 해당 트랜잭션이 빨리 처리됨.
  • gasLimit: 이 트랜잭션을 위해 구입할 가스의 최대량
    • 21000 gas. 이더 소비량 = 21000 * gasPrice
  • to: 수신 이더리움 address (20 bytes)
  • value: 수신처에 보낼 이더의 양
  • data: 가변 길이 data payload
    • to가 contract address라면, 4 bytes의 function selector와 그 이후의 function argument를 serialize한 data이다.
      • function selector = (keccak-256(function prototype))[0:4]
  • v, r, s: EOA의 ECDSA 디지털 서명의 구성 요소

서명

서명 시 사용되는 트랜잭션 T는 9개 필드로 다음과 같다. 이 중 맨 끝의 3개 { chainID, 0, 0 }은 EIP-155에 의해 추가된다. EIP-155는 Simple Replay Attack Protection으로 chainID를 포함하여 다른 네트워크 체인에서 해당 트랜잭션이 replay될 수 없도록 한다.

T = { nonce, gasPrice, gasLimit, to, value, data, chainID, 0, 0 }

Sig는 서명으로 서명 알고리즘, F sig() 로 (r, s) 두 값이 output으로 만들어진다. Transaction T와 private key k를 사용한다. RLP는 Recursive Length Prefix (RLP) encoding scheme 을 말한다.

Sig = F sig(keccak256(RLP(T)), k) = (r, s)

서명 시에는 임시 private key q, 그리고 q로부터 생성되는 임시 public key Q 를 사용한다.

q = rand() % 2**256
Q = q * K = (x, y)

여기서 r = Q의 x 좌표이다. s는 다음으로 계산된다.

s ≡ q**-1 (Keccak-256(RLP(T)) + r * k) mod p

서명 검증

r, s 그리고 sender의 public key K를 사용해서 Q를 계산한다. Q의 x 좌표와 r이 같으면 서명이 유효하다.

w = s**-1 mod p
u1 = Keccak-256(RLP(T)) * w mod p
u2 = r * w mod p
Q ≡ u1 * G + u2 * K     (mod p)

참고: https://github.com/ethereumbook/ethereumbook/blob/develop/06transactions.asciidoc